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Abstract 
Kathmandu Valley faces challenges managing its growing wastewater volume, compounded by the complex composition of 
unregulated industrial discharges. Releasing untreated wastewater poses a severe risk to public health and the environment. 
Existing wastewater treatment infrastructure, primarily reliant on conventional activated sludge processes (ASP) struggles to 
meet growing demands. These systems require substantial land area, are sensitive to influent variations, produce a high 
volume of sludge, and incur high operational and maintenance costs. 
Biofilms, naturally occurring assemblages of microorganisms adherent to surfaces and embedded within an extracellular 
polymeric matrix (EPS), present a compelling alternative for wastewater treatment due to their diverse pollutant removal 
capabilities. When implemented as biofilm reactors, they offer distinct advantages, including tolerance to fluctuations in 
wastewater composition, minimal land requirements, and reduced energy consumption. Notably, microbes residing within 
a biofilm are capable of biodegradation of persistent materials such as pharmaceuticals, metals, and plastics. Globally, biofilm-
mediated wastewater treatment has been implemented successfully, while a knowledge gap remains for the treatment of 
Kathmandu's wastewater.  
This review critically assesses biological wastewater treatment methods, providing insight into: a) suspended growth process 
with their configuration, application, and limitations, b) wastewater treatment infrastructures of Kathmandu Valley, and c) 
biofilm process with their configuration, factors influencing biofilm development and performance, application of specific 
microbial strains for enhanced treatment efficiency, and factors to be considered during implementation. Furthermore, the 
paper recommends: a) an extensive study of laboratory-scale biofilm reactors evaluating and optimizing their performance 
for local integration and b) investigating the role of diverse microbial communities to further enhance the treatment plant's 
operation. By prioritizing research and development towards biofilm technology, Kathmandu Valley can achieve efficient 
and environmentally friendly wastewater management.  
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Introduction 
Wastewater is defined as water that has been impacted 

by anthropogenic activities leading to deterioration in its 

physiochemical properties. This effluent incorporates 

liquid waste discharge that originates from human 

activities such as domestic use (excreta, urine, cooking, 

bathing, washing, etc.), commercial and industrial 

applications (food and paper processing, manufacturing 

and hospitality management), and agricultural practices 

(fertilizers, pesticides, and animal husbandry) [1–3]. The 

detrimental effects of discharging untreated wastewater 

are multifaceted, encompassing both public health and 

the environment [4]. Pathogen exposure from untreated 

wastewater can cause skin and kidney problems, and 

increase the spread of infectious diseases such as 

gastrointestinal, typhoid, cholera, and diarrhea [5,6]. 

Environmental impacts of untreated wastewater disposal 

range from pollution of surface water and groundwater 

to adverse effects on biodiversity [7]. Poor wastewater 

management threatens the extinction of around a million 

plants and animals [8]. Additionally, the dispersion of 

untreated wastewater effluent and sludge in terrestrial 

ecosystems results in the gradual accumulation of 

persistent organic compounds and toxins in the 

environment [9]. Furthermore, inadequate wastewater 

management hinders the overall progress towards the 

interconnected sustainable development goals (SDGs) 

[10]. 

A study by Jones et al., (2021) [11] assessed that only 52% 

of the global wastewater volume produced annually, 

estimated at 359.4 x 109 m³, undergoes treatment. 

Moreover, the same study highlighted North America as 

having the highest per capita wastewater generation rate, 

at 209.5 m³/year, while lower-middle-income economies 

such as Nepal have a generation rate of 22.5 
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m³/capita/year. Nepal's urbanization is on the rise, with 

a significant portion of the population concentrated in 

major cities like Kathmandu, Pokhara, Lalitpur, 

Bhaktapur, and Birgunj [12]. Driven by a continuous 

influx of people migrating from rural regions to cities, 

this migration is primarily motivated by the pursuit of 

improved employment opportunities, educational 

advancement, and access to various amenities [13,14]. 

This trend has intensified the wastewater management 

complex and placed significant pressure on the limited 

water resources within these urban centers [15,16].  

Kathmandu Valley exhibits the most extensive 

urbanization with the largest built-up area (37.7%) and 

the maximum gain in built-up area of 368.08% increase 

within the past three decades [17]. Despite a reported 

70% sewerage network coverage in the valley, the sole 

operational Guheshowri Wastewater Treatment Plant 

can only process 12% of the total wastewater generated 

[18]. Furthermore, projections indicate a significant rise 

in wastewater generation within the valley, reaching 350 

million liters per day (MLD) by 2030, meanwhile, only an 

estimated 44% of this volume can be treated with existing 

and proposed wastewater treatment infrastructures [19]. 

A study by Koju et al., (2022) [20] revealed that an 

estimated 228 industrial facilities within the valley 

directly discharge untreated effluents, which typically 

contain high concentrations of nitrate, total suspended 

solids, calcium hardness, and heavy metals such as iron 

(Fe), arsenic (As), zinc (Zn), and lead (Pb) into waterways 

or sewer networks. Some of these heavy metals are toxic 

and can be carcinogenic or teratogenic potentially 

causing nervous system damage, organ dysfunction, or 

impaired development and growth [21].  

Wastewater treatment utilizes various effective 

technologies for the removal of pollutants from 

wastewater. These encompass biological processes, such 

as the ASP and waste stabilization ponds, and 

physicochemical methods, including membrane 

technologies and advanced oxidation processes [22]. 

Coagulation-flocculation is a common and effective 

physicochemical process for removing turbidity, organic 

matter, and suspended solids from wastewater [23,24]. 

Metal salts when applied as coagulants are also capable 

of inactivating bacteria [25]. Recent research has been 

focused on the application of natural coagulants as an 

environmentally friendly alternative to chemical 

coagulants [26]. For instance, a study by Boulaadjoul et 

al., (2018) [27], showed that Moringa oleifera seed when 

used as a natural coagulant for the treatment of effluent 

of the paper mill industry achieved 97.3% removal of 

chemical oxygen demand (COD), compared to 92.7% 

with aluminum sulfate (alum). However, the drawbacks 

of using coagulants are [26]: a) chemical coagulants have 

high and toxic sludge generation and b) natural 

coagulants can release organic matter into treated 

effluent. Membrane technology with its modularity 

applies membrane pores for pollutant separation and can 

also handle emerging pollutants and is either driven by 

pressure or osmotically [28,29]. A study by Gebru & Das, 

(2018) [30] applied modified cellulose acetate 

ultrafiltration with TiO2 nanoparticles that demonstrated 

excellent removal of chromium (VI) ions up to 99.8%. 

However, the major drawbacks of membrane technology 

are membrane fouling and maintenance of membrane 

modules [31]. Advanced oxidation processes are 

chemical treatments suitable for wastewater with toxic or 

non-biodegradable compounds [32]. In this process 

oxidizing radical groups such as hydroxyl radicals are 

generated that oxidize and mineralize organic 

compounds into H2O and CO2 [33,34]. Research 

conducted by Doltade et al., (2022) [35] achieved 91% 

COD removal from dye wastewater using (hydrogen 

peroxide) H2O2 and ozone. The disadvantages of using 

an advanced oxidation process for the treatment of 

wastewater are: a) power outage that can inhibit effective 

system operation thus requiring expensive operational 

and maintenance equipment and b) potential 

unregulated by-products that may be formed in the 

treated effluent. 

The overall objectives of biological wastewater treatment 

are the transformation of biodegradable pollutants into 

acceptable end products, nutrient removal, 

immobilization of solids into the biofilm matrix or 

biological floc, and elimination of trace constituents and 

compounds [36]. While biofilms matrix host surface-

adherent communities encased within a self-secreted 

biopolymer matrix, biological flocs are suspended 

aggregates of bacteria held together by a similar EPS 

[37,38]. Microbes achieve the stabilization of organics by 

two distinct pathways [39]: a) respiration (oxidation of 

substrate with release of energy) and b) synthesis 

(utilization of the energy produced by respiration and 

remaining substrate for production of new protoplasm 

and maintenance of the cell). Microbes can be classified 

as aerobic, anaerobic, and fermentative based on their 

preferred catabolic pathways for energy production [40]. 

Aerobic biodegradation utilizes O2 as the terminal 

electron acceptor (TEA) during the catabolization of 

organic compounds [41]. This results in an increase in 

microbial population, and CO2, H2O, and other 
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compounds as byproducts [42]. Conversely, anaerobic 

biodegradation employs CO2, NO3
-, SO4

2-, organic 

molecules, and some oxidized metal ions such as Mn4+ 

and Fe2+ as alternative TEA [43–46]. In the fermentative 

process, microbes utilize the organic molecules as 

electron acceptors [46]. Finally, biological systems can be 

classified based on how microorganisms are retained 

within the treatment reactors as suspended growth 

processes (planktonic) and attached growth processes 

(biofilm) [47]. 

While suspended growth systems such as ASP are widely 

used in wastewater treatment, they have high operation 

and maintenance (O&M) and design costs [48]. Biofilm 

reactors offer a promising alternative due to their 

compact design, efficient pollutant removal capabilities, 

and lower operational demands [49], potentially 

addressing these limitations. Biofilms are communities of 

microbial cells attached to a surface and enclosed by an 

EPS [50]. These biofilms can harbor diverse microbial 

populations, either homogeneous or heterogeneous 

species composition [51]. Bioremediation of contaminates 

through the application of biofilm is an environmentally 

friendly and cost-effective approach [52]. Through 

metabolic processes such as biomineralization, 

biosorption and bioaccumulation microbes within the 

biofilm can remove even slow degradable pollutants 

from wastewater [53]. Globally, the treatment of 

wastewater has been carried out using biofilm in the form 

of Tricking Filters (TFs), Rotating Biological Contractors 

(RBCs), Moving Bed Biofilm Rectors (MBBRs), and others 

[54]. 

A 2017 study by Gurung et al., (2017) [55] identified 

approximately 26 constructed wetlands (CWLs) used for 

secondary wastewater treatment in Nepal. These systems 

function on a symbiotic relation between the macrophyte 

and microbes [56]. Macrophytes encompass a wide range 

of plant life, including vascular plants, bryophytes, green 

macroalgae, and charophytes that thrive entirely or 

partially submerged in aquatic environments [57]. CWLs 

promote biofilm growth on submerged plant roots and 

within porous root beds, facilitating the removal of 

organic compounds [58–60]. However, the current CWL 

design in Nepal primarily focuses on plant selection [61–

63]. This highlights a substantial knowledge gap 

regarding the targeted application of biofilm technology 

for wastewater treatment within the Kathmandu Valley. 

Coupled with limited land availability for construction 

and expansion of conventional ASP further emphasizes 

the need for research and development of alternative 

wastewater treatment technologies, particularly those 

utilizing biofilm processes. 

The review paper aims to comprehensively analyze 

published research on biofilm reactor technology for 

wastewater treatment providing insight into their 

various configuration, advantages, factors influencing 

their performance, and microbial dynamics. 

Furthermore, the review assesses the advantages and 

disadvantages of suspended growth biological process 

and the current state and proposed advancements in 

wastewater treatment infrastructure within the 

Kathmandu Valley. By undertaking a meticulous 

examination of existing literature, the paper aims to 

identify knowledge gaps that hinder the optimization of 

biofilm reactor performance for Kathmandu's 

wastewater treatment. This review will serve as a 

foundational resource for future research endeavors by 

outlining key areas for investigation. These areas 

encompass the application of specific microbial strains 

for enhanced treatment efficiency, the evaluation of 

microbial genomic profiles within reactors operated over 

extended durations, and the exploration of 

unconventional metabolic pathways employed by the 

microbial consortium for improved pollutant removal. 

Review Methodology: 
A comprehensive review of recent peer-reviewed studies 

was undertaken to evaluate the potential application of 

biofilm reactor technology for wastewater treatment 

within the Kathmandu Valley. 

Search strategy 
Academic databases such as ACS, Google Scholar, 

Scopus, PubMed, and others were searched using 

keywords such as "biofilm reactors," "wastewater 

treatment," "Kathmandu Valley," and relevant terms. The 

literature search focused on recent peer-reviewed articles 

published in English. The emphasis was on studies 

published after 2020, to ensure the most current 

information. 

Inclusion/Exclusion criteria 
The search specifically targeted studies investigating 

biofilm reactor technology for wastewater treatment 

applications. Included studies explored the mechanisms 

by which these reactors remove pollutants and factors 

impacting their performance. Conversely, studies solely 

focused on individual contaminants or applications 

outside of wastewater treatment were mostly excluded. 
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Selection process 
Following the initial screening of titles and abstracts, full-

text articles of potentially relevant studies were retrieved 

for a more in-depth evaluation based on the 

predetermined inclusion and exclusion criteria. 

Data analysis and synthesis 
A narrative synthesis approach was employed to analyze 

and synthesize the findings from the selected studies. 

This method involved the exploration of recurring 

themes, patterns, and any potential inconsistencies 

within the research. The analysis specifically focused on 

the application of biofilm reactor technology for 

wastewater treatment, particularly in the context of 

municipal wastewater treatment. 

Figure 1. Schematic flow diagram of Activated Sludge Process 

(ASP) [Modified diagram of [70]] 

Suspended Growth Wastewater 
Treatment Technologies 
In a suspended growth system, aggregates (flocs) of 

microorganisms responsible for treatment grow in 

contact with the liquid that is to be treated [64].  These 

microbes without attachment to any surfaces, grow in the 

planktonic state within the bulk medium [47].  

Depending on the wastewater type, the process can be 

aerobic for the treatment of municipal and industrial 

wastewater, or anaerobic for the treatment of organic 

sludge and concentrated industrial wastewater [65].  

In conventional aerobic suspended growth systems such 

as ASP, air agitation within the aeration tank enhances 

the development of microbial flocs, known as activated 

sludge (AS) [66]. Here, the primary effluent is mixed with 

settled solids from the secondary clarifier before 

introducing into the aeration tank (Figure. 1). Continuous 

aeration is provided through diffusers positioned at the 

tank’s bottom [67]. Sludge recirculation ensures a 

resident microbial population within the aeration tank, 

facilitating efficient organic compound oxidation of the 

incoming wastewater [68]. Higher influent organic load 

necessitates a proportional increase in the aeration tank's 

microbial population, achieved by adjusting the sludge 

recycling rate based on secondary clarifier sludge 

concentration and existing microbial density in the 

aeration tank [69].   

Table 1. Application of suspended growth process based treatment systems. 

Treatment Technology Wastewater Type Target Pollutants Removal Efficiency References 

Activated Sludge Process Pickled-vegetable plant 

sewage 

COD 90% [73] 

Activated Sludge Process 

(co-treatment)  

Dairy (cheese and milk) 

and domestic 

wastewater 

Carbon and NH4-N Carbon (both types): 87%, NH4-N 

(cheese): 95%, NH4-N (milk): 75% 

[74] 

Sequencing Batch Reactor 

(anammox)  

Real domestic 

wastewater 

TN TN (anammox): 89%, TN 

(denitrification): 11% 

[75] 

Sequencing Batch Reactor Synthetic domestic 

wastewater 

NO3-N, COD, NH3-N NO3-N: 78%, COD: 93%, NH3-N: 

83% 

[76] 

Extended Aeration 

Activated Sludge System 

Pulp and paper 

industry wastewater 

Ammonia 

 

Achieved standard limit (10 

mg/L) at 24 hr HRT 

[77] 

Waste Stabilization Pond Wastewater with 

tetracycline 

COD, Tetracycline COD: 80 ± 4%, Tetracycline: 99% 

(7 days HRT) 

[78] 

Waste Stabilization Pond Household swine 

wastewater 

TN, COD, TP TN: 84%, COD: 74%, TP: 84% [79] 

Membrane Bioreactor 

(PVDF flat sheet) 

Municipal wastewater COD 89% [80] 

Membrane Bioreactor 

(submerged anaerobic) 

Domestic wastewater COD 89% (6-12 hr HRT) [81] 

Membrane Bioreactor 

(hollow fiber) 

Municipal wastewater COD 92.8% (6-12 hr HRT) [82] 

Where, NH3-N = Ammonia-Nitrogen; NH4-N = Ammonium-Nitrogen; TP = Total Phosphate; TN= Total Nitrogen 
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The characteristics of AS flocs developed in the APS are 

highly influenced by operational process parameters 

such as Hydraulic Retention Time (HRT), nutrient 

availability, Recycling Ratio, Carbon/Nitrogen ratio, and 

solid retention time [71,72]. Many studies have 

successfully demonstrated the effective treatment of 

wastewater with varying characteristics using 

conventional ASP and its modifications (Table 1).  

One of the modifications is the Sequencing Batch Reactor 

(SBR), which treats wastewater in batches within a single 

aeration tank, eliminating the requirement of separate 

clarifier [83]. The operation of SBR is as follows [84]: a) 

Wastewater is added to the tank containing biomass, b) 

The biomass and wastewater mix for a set time, allowing 

microbes to consume organic matter, c) Aeration and 

mixing may or may not be carried out during this stage, 

d) The contents within the tank is allowed to rest/settle 

for efficient separation of solids and liquid, e) Effluent 

and sludge removal from tank, and f) The process restarts 

with the addition of a new batch of wastewater. 

Waste Stabilizing Ponds (WSPs) a type of suspended 

growth process, offer the utilization of natural processes 

for wastewater treatment [85]. In this system, bacteria 

breakdown complex organic matter into CO2 and simpler 

compounds which algae then uptake through 

photosynthesis providing oxygen essential for the 

sustenance of aerobic bacteria [86]. The WSPs can be 

divided into three distinct ponds (Figure 2a) based on the 

operational conditions namely: 1) Maturation/Aerobic 

pond, 2) Facultative pond and, 3) Anaerobic pond [87].  

Figure 2. Schematic diagram: a) Configuration of Waste 
Stabilization Ponds and b) Mechanism of treatment in a 
Facultative Pond [Modified diagram of [87,88]] 

The majority of Biological Oxygen Demand (BOD) 

removal from wastewater occurs in the facultative or 

anaerobic pond whose effluent is then fed to the 

maturation pond for pathogen elimination [89]. A 

facultative pond (Figure 2b) with lesser depth than an 

anaerobic pond, requires a larger land area and requires 

ample sunlight for optimal function [90]. Meanwhile, the 

maturation pond presents itself as a low-cost alternative 

for pathogen removal (disinfection) and can also be 

integrated with other wastewater treatment technologies 

[91]. Recently, studies have explored modifications to 

WSPs that enhance algal biomass to potentially improve 

treatment efficiency (Table 1). 

Membrane bioreactors (MBRs) combine a conventional 

ASP system with membrane filtration technology (Fig. 3) 

[92]. The degradation of pollutants occurs in the 

bioreactor i.e. ASP, while the membrane filter separates 

the microorganism from the treated water [93].  

Figure 3. Schematic flow diagram of Membrane Bioreactor 

(MBR) [Modified diagram of [94]] 
Since there is no requirement for a secondary clarifier 

after the aeration tank, this allows for a smaller-sized 

bioreactor compared to conventional ASP [95]. The 

effectiveness of MBRs in treating wastewater varies with 

the type of membrane material used, as shown in Table 

1. 

Despite their effectiveness in treating diverse 

wastewater, suspended growth systems still face certain 

limitations as presented in Table 2. 

Table 2. Limitations of suspended growth process based 
treatment systems. 

Treatment 
Unit 

Limitations Ref 

Activated 
Sludge 
Process 

Requires longer HRT; 
Highly sensitive towards variation in 
influent wastewater flow and 
characteristics and unexpected 
modification of operating conditions; 
Filamentous bulking of AS; 
Lower sludge retention time; 
Higher Operational cost and 
requirement of continuous supervision. 

[96–99] 

Waste 
Stabilizing 
Ponds 

Requires large land area for 
construction hence a higher capital cost; 
Long retention time; 
Relatively ineffective in colder regions; 
Release of biogas; 
Not suitable for nutrient removal; 
Provides breeding ground for 
mosquitoes; 

[100] 

Sequencing 
Batch 
Reactor 

More sophisticated control system than 
conventional ASP; 
Capable of treating relatively smaller 
volume of wastewater; 

[83,101
,102] 
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Low pathogen removal; 
Membrane 
Bioreactor 

Membrane fouling and high 
maintenance cost; 
Dewatering of sludge more difficult 
due to sludge flocculation; 

[93,103
] 

These limitations of suspended growth biological 

systems present a significant economic and sustainability 

challenge for developing countries like Nepal. Similarly, 

these systems necessitate a dedicated and well-designed 

sludge management strategy for optimal operation.  

Wastewater Treatment Infrastructure in 
Kathmandu Valley 
Before 2000 A.D., the Kathmandu Valley operated five 

prominent (Table 3) decentralized wastewater treatment 

plants (DEWATS) [104]. However, most of these facilities 

became non-functional due to insufficient operation and 

management practices, malfunctions in flow control 

systems, and recurring power outages [19].  

Table 3: Decentralized treatment plants in Nepal and their 
service area prior to 2000 A.D. [104] 

Location Catchment Served 

Dhobighat Kathmandu & Lalitpur 
Guheshwori Gokarna & Chabahil 

Hanumanghat North-east Bhaktapur 
Kodku East Lalitpur 

Sallaghari North & South Bhaktapur 

Several of these wastewater treatment systems with 

conventional ASP are currently undergoing 

rehabilitation and upgradation, meanwhile, two Moving 

Bed Biofilm Reactors (MBBRs) are proposed as DEWATS 

at Hanumanghat (1 MLD) and Gokarna (3 MLD) which 

are currently under construction [105].  

Employing suspended growth biological treatment 

systems, such as conventional ASP, offers a proficient 

approach to eliminating organic pollutants from 

wastewater, achieving removal rates of 84-86% COD 

[106]. Although conventional ASP effectively treats 

wastewater, their limited nutrient removal necessitates 

their modification by extending the mean cell residence 

time (MCRT) and HRT or incorporating an additional 

tertiary treatment for complete nitrate and phosphate 

elimination [36,107]. Additionally, the performance of 

these systems is highly susceptible to operational 

parameters like temperature and HRT [108]. 

The Guheshowri Wastewater Treatment Plant (WWTP) 

with conventional ASP as the biological treatment unit 

and recently upgraded to improve the effluent 

wastewater quality, currently boasts a treatment capacity 

of 32.4 Million Liters per Day (MLD) [105]. This 

modernization incorporated treatment units like primary 

sedimentation tanks, chlorination for disinfection at the 

beginning of serpentine effluent detention chamber, 

dechlorination to neutralize chlorine residuals before 

effluent discharge, and disc filters (Figure 4a) for 

enhanced removal of solids along the primary flow line 

(Wastewater Treatment) [109].  

a.  

b.  
Figure 4. Treatment units added to Guheshowri WWTP after 
modernization: a) Disc Filter and b) Anaerobic Digesters 

The secondary flow line (Sludge Treatment) also 

benefited from advancements, with the addition of 

sludge thickeners, dewatering units, anaerobic digesters 

(Figure 4b), and biogas collection units to capture the 

generated biogas providing a sustainable energy source 

for the treatment plant’s daily operations [109]. However, 

the conventional treatment plant's increased dependency 

on a high degree of mechanization, inherent 

uncertainties, natural conditions, and influent variation 

introduces uncertainty that leads to discrepancies in 

operational cost, environmental risks, and effluent 

quality [19,110]. 

Biofilm Technology 
Wastewater's dynamic physicochemical profile (chemical 

composition, pH, temperature, turbidity) fosters diverse 

microbial communities. These communities adapt by 

forming complex biofilms, which are adherent 

assemblages of microorganisms. Biofilms provide 

protection and communication channels for the microbial 

colonies, playing a crucial role in nutrient capture and 

consumption [111,112]. The life cycle of biofilm (Figure 5) 

begins with [52]: a) Attachment: adhesion of free-floating 

microbes (planktonic) to the carrier surface, b) 
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Development and Maturity: recruitment of planktonic 

microbes, reproduction, and increase in the cell density, 

c) Death and dispersion: dispersion through halt in 

production of EPS or sloughing caused by shear or 

hydrodynamic force.  

Figure 5. Diagrammatic View of Life cycle of Biofilm 
Mechanism [Modified diagram of [113]] 

EPS enhances the biofilm's mechanical and chemical 

stability, functions as a bioadsorbent, effectively 

capturing and concentrating metals within the biofilm, 

and provides a protective barrier, shielding the biofilm 

from various environmental stresses [47,114]. Within a 

biofilm, diffusion is the predominant transport process of 

substrates and electron acceptors, resulting in spatial 

variations in substrate concentration throughout the 

biofilm structure [115,116]. Biofilms harbor specialized 

microbes deeper within their structure, offering 

protection and promoting efficient removal of 

micropollutants [117]. 

 

Figure 6. Schematic diagram of Trickling Filter [Modified 
diagram of [122]] 

Wastewater treatment using biofilm 
Biofilm reactors are a biological wastewater treatment 

system designed to leverage the metabolic capabilities of 

microbial communities by fostering their growth as 

biofilms on surfaces within the reactor [118]. Biofilm can 

be engineered into reactors namely Trickling filter (TF), 

Submerged Fixed Bed Biofilm Reactor (SFBBR), Moving 

bed biofilm reactor (MBBR), Biological Aerated Filter 

(BAF), and Rotating Biological Contractor (RBC) [54]. A 

TF utilizes large packing media (specific biofilm surface 

area aF = 50 to 200 m2/m3) typically plastics or rocks, over 

which wastewater tricks downwards from a distribution 

system [117,119]. TFs have demonstrated excellent 

oxidation of carbon and combined oxidation of carbon 

and nitrification [54]. Total suspended solid is produced 

in the effluent treated through TF (Figure 6)  hence, 

requiring a circular or rectangular secondary clarifier 

[52,120].  The recirculation rate generally varies from 0.5 

to 4 times the influent flow but can reach up to 10 times 

for strong industrial wastewater [121].  

An SFBBR (Figure 7) is usually constructed with small-

sized (0.7-8.0mm) granular media providing a specific 

surface area of 1,000-3,600 m2/m3 and operated in a fully 

submerged condition [117]. These relatively new types of 

biofilm reactors are primarily used for the treatment of 

municipal and industrial wastewater [123]. In these 

reactors, the use of a smaller filter medium allows the 

combination of biological conversion processes with 

depth filtration, retaining suspended solids, and 

eliminating the need for downstream treatment for solids 

removal while the excess biofilm is usually removed 

through regular backwashing of the filter [124].  

 

Figure 7. Schematic diagram of Submerged Fixed Bed 
Biofilm Reactor [Modified diagram of [122]] 

Meanwhile, the MBBR system utilizes polyethylene 

carriers that have a high surface area for the 

establishment of adherent biomass, while the remaining 

microbial population exists in a suspended state within 

the liquid phase [125]. The support medium is kept in 

suspension through mechanical mixing (Figure 8a) or 

aeration (Figure 8b) [126]. A comparative investigation 

revealed that an MBBR system exhibited a twofold 

increase in effluent treatment capacity compared to an 

activated sludge system while maintaining equivalent 

pollutant removal efficiency [127]. The advantage of 

MBBR is its high rate of pollutant removal coupled with 
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stability and compactness [123]. The media used in MBBR 

provides a protective surface for biofilm development 

thus being able to achieve nitrification even at very low 

temperatures [128]. Similarly, the low hydraulic headloss 

in the reactor makes it suitable to be implemented in 

specific treatment steps such as carbon removal, 

nitrification, and pre-denitrification [117]. 

 
Figure 8. Schematic diagram of Moving Bed Biofilm Reactor: a) 
Anaerobic/Anoxic reactor with mechanical mixing and b) 
Aerobic reactor with air diffuser [Modified diagram of [129]] 

Table 4: Effectiveness of different biofilm technologies for 
treatment of different wastewaters. 

Treatment 
Technology 

Application Key Results Ref 

Tricking 
Filter 
(Maize cob 
and Date 
Palm Fiber)  

Municipal 
Wastewater 
treatment 

Increased pollutant 
removal by Maize cob 
(8-15%) higher 
compared to Date 
Palm Fiber 

[130] 

Tricking 
Filter 
(Expanded 
Polystyrene 
Media) 

Wastewater 
treatment 

Achieved 80.75% 
COD removal 

[131] 

Up-flow 
Fixed Bed 
(Scoria 
Packing) 

Municipal 
Wastewater 
Treatment 

Improved ammonia & 
total nitrogen removal 
with 
anaerobic/aerobic 
cycles 

[132] 

Anaerobic 
Fixed Bed 
Biofilm 
Reactor 

Domestic 
Wastewater 
Treatment 

Higher COD removal 
(2.9 per hr)  & 
biomethane 
production (154N-
mLCH4 per gm COD 
removed)  compared 
to single-phase system  

[133] 

Moving 
Bed Biofilm 
Reactor 
(Zinc-
Doped 
Carriers) 

Moving 
Bed Biofilm 
Reactor 

Achieved 93% BOD, 
80% NH4-N, and 70% 
COD removal 
 

[134] 

Moving 
Bed Biofilm 
Reactor 
(Partial 
Nitritation-
Anammox) 

Municipal 
Wastewater 
Treatment 

Achieved nitrogen 
removal rate of 0.66 g 
N m²/d 

[135] 

The biofilm reactors applied in different configurations 

have proven their effectiveness in the removal of 

pollutants from wastewater as demonstrated in Table 4. 

 

Biofilm composition, particularly the dominant microbial 

taxa, dictates its classification and allows for targeted 

inoculation of wastewater treatment plants with specific 

microbial communities to defined pollutants, enhancing 

overall treatment efficiency [52]. Multiple research 

(Table 5) have investigated the efficacy of immobilized 

algae in treating municipal wastewater. Beyond the 

primary mechanism of nutrient (phosphorus and 

nitrogen) removal via cellular uptake, microalgae possess 

the additional capability to sequester excess nutrients 

through a process known as luxury uptake [136]. 

In a 2020 study,  Chen et al., (2021) [137], demonstrated 

the efficacy of a Rotating Algal Reactor (RAR) for 

removing pharmaceutical and personal care products 

(PPCPs) from wastewater. This system achieved a high 

removal efficiency, ranging from 70% to 100%, without 

significantly compromising the nutrient removal 

capacity of the algal biofilm reactor. Furthermore, algal 

biofilm benefits include potential integration for 

biodiesel production via lipid accumulation within the 

algae, utilization of biomass as a raw material for 

bioplastic production, and even the exploration of the 

biomass as a feedstock for animals [138,139]. 

Paralleling the application of algae, research has 

identified various bacterial strains with the potential to 

augment wastewater treatment efficiency. A study by 

Gao et al., (2020) [144] identified Simplicispira, 

Diaphorobacter, Hydrogenophaga, Pseudoxanthmonas, and 

Stenotrophomonas as dominant bacteria in an up-flow 

denitrification reactor, achieving over 80% for COD and 

97%  nitrate removal from wastewater. Isolating a novel 

Pseudomonas sp. (Y39-6), Zhang et al., (2021) [145] 

demonstrated its potential for wastewater treatment 

through aerobic-autotrophic nitrate removal in a moving 

bed biofilm reactor, achieving a 24.83% removal 

efficiency under low carbon to nitrogen ratio (C/N) < 1. 

Similarly, Khosravi et al., (2020) [146] explored using  

Escherichia coli biofilm immobilized on zeolite to remove 

Zn and copper from solution,  achieving removal 

efficiencies of 57.35% for Zn and 54.61% for copper after 

a 10-day contact time. Research by Begum & Radha, 

(2016) [147] achieved high efficiency in treating industrial 

phenol-rich effluent using Pseudomonas fluorescens in an 

inverse fluidized bed biofilm reactor, removing 98.70% of 

COD and 100% of phenol. EPS isolated from Acinetobacter 

junii BB1A biofilm exhibited significant flocculating 
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activity (94% at 30 mg/L) against kaolin suspension, 

highlighting the crucial role of EPS-associated amide 

groups in this process [148].  

Beyond the individual benefits of algae and bacteria, a 

symbiotic consortium of these microorganisms can 

achieve even greater wastewater treatment efficiency. 

The study by Tang et al., (2018) [149] showed a 

synergistic effect in wastewater treatment, where adding 

algae to a sequencing batch biofilm reactor significantly 

improved nutrient removal, achieving a 27.3% increase in 

total nitrogen removal and a 65.8% increase in total 

phosphorus removal compared to domestic wastewater 

treatment without algae. Further emphasizing the 

collaborative nature of this approach, Amini et al., (2020) 

[150] identified a 5:1 ratio of algae to activated sludge as 

optimal for nutrient removal from municipal wastewater 

using algal-bacterial photo-bioreactors. While comparing 

trickling filters containing an algae-bacterial consortium 

to a reactor with only bacteria, Katam et al., (2020) [151], 

found that the algae-bacterial reactor achieved 

significantly higher removal efficiencies for caffeine (up 

to 96%) and alkylbenzene sulfonate (up to 99%) from 

wastewater. 

These biofilm reactors offer a compelling alternative for 

wastewater treatment plants due to their multitude of 

advantages. These reactors excel at simultaneously 

removing both organic pollutants and nutrients from 

wastewater [141,152]. Additionally, biofilm reactors 

boast impressive adaptability, allowing them to function 

effectively even when operational conditions fluctuate 

within the treatment plant [49]. Furthermore, these 

systems generate significantly less sludge compared to 

suspended growth processes [153], simplifying waste 

management. The user-friendly operational nature of 

biofilm reactors further enhances their appeal, making 

them a sustainable and efficient solution for wastewater 

treatment facilities [154].  

Factor affecting the formation of biofilm 
Biofilm reactors rely on fostering a healthy community of 

microbes on a carrier surface to optimize wastewater 

treatment performance. This section explores how 

various factors, such as pH, surface characteristics of the 

carrier material, and flow regime, can significantly 

influence biofilm formation and development. 

Optimizing these parameters is crucial for promoting 

and sustaining biofilm, which ultimately leads to 

improved treatment efficiency [155,156]. 

1 Surface Topography 
Several surface properties influence biofilm formation. 

Studies have shown that increasing the hydrophobicity 

and roughness of a surface enhances biofilm attachment 

and growth [157,158]. Additionally, porous surfaces 

provide a favorable microenvironment for microbial 

attachment and proliferation, offering a protective space 

for biofilm development [159]. Research by Lu et al., 

(2020) [160] found that decreasing surface roughness on 

ceramics from sub-micron to nano-scale increases 

hydrophilicity, hindering Staphylococcus aureus adhesion. 

A study by Hsieh & Chien, (2023) [161] investigated 

biomimetic surfaces for bacterial adhesion of Escherichia 

coli and Staphylococcus aureus, revealing that smaller 

features hampered biofilm formation, along with 

hysteresis angle playing the key role in influencing 

bacterial attachment. Another research by Zhang et al., 

(2020) [162] revealed that rougher surfaces with more 

stagnant zones and asperities enhanced algal adhesion by 

promoting initial interception, retention, and 

strengthening the attachment force. Similarly, 

Polyethylene Terephthalate (PET) threads surface 

engineered using chromic acid which created new 

grooves and decreased the contact angle, resulting in an 

increased rate of microalgae (Scenedesmus dimorphus) 

attachment [163]. 

2 Temperature and pH 
Temperature's impact on biofilm formation is species-

specific, but increased cell growth at any temperature 

generally leads to more EPS production, which enhances 

biofilm development and provides protection [164,165]. 

The presence and response rate of enzymes and the 

features outside and inside cells are influenced by 

environmental temperatures [166,167]. Gram-positive 

bacteria exhibit a narrower optimal temperature range 

(30-37°C) for biofilm formation compared to the broader 

range tolerated by Gram-negative bacteria (4-50°C) [168]. 

The research conducted by Morimatsu et al., (2012) [169] 

found that when nutrients are abundant Pseudomonas 

putida biofilms detach at high temperatures while 

remaining stable at lower temperatures. A study by   Li 

et al., (2022) [170] reported that colder temperatures (4°C) 

triggered increased production of specific 

polysaccharides (with C═O and O═C-O functional 

Table 5. Nutrient removal efficiencies using algal biofilm-based treatment 
systems. 

Parameter 
Influent 
mg/L 

Effluent 
mg/L 

Percent 
Removal 

Type Ref 

TP 2.1 1.6 23.8 Municipality 
[140] 

TN 91.1 19.1 79.0 Municipality 
[141] 

NH4-N 5.4 0.2 96.3 Municipality 
[142] 

NO3-N  5.57 2.2 60.5 Municipality 
[143] 

Where, TP = Total Phosphorous; TN = Total Nitrogen 
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groups), leading to denser and more resistant biofilms. 

The optimal temperature for development of algal 

species is between 20°C and 30°C [171]. In another study, 

Gonzalez-Camejo et al., (2019) [172] reported that 

microalgae in a mixed community with bacteria 

completely ceased activity at temperatures exceeding 

30°C. 

The formation and development of biofilms are highly 

sensitive to environmental factors, with pH playing a 

critical role. Generally, the pH of wastewater falls within 

the range of 6.5 to 8.5, with most values falling above 

neutrality (pH = 7) [173]. Most bacterial species exhibit 

peak production of polysaccharides, essential 

components of biofilms, at a neutral pH of approximately 

7 [174]. The EPS matrix surrounding a biofilm acts as a 

protective shield, enhancing its tolerance to varying pH 

levels compared to planktonic cells [175,176]. A study by 

Zmantar et al., (2010) [177] reported significantly reduced 

biofilm formation of Staphylococcus aureus at both acidic 

(pH = 3) and alkaline (pH = 12) conditions compared to a 

neutral pH. The research by   Li et al., (2021) [178] found 

that pH significantly affects the bacterial community 

composition in a microbial fuel cell, with higher pH 

leading to increased power output. At temperatures of 

37°C and pH 7.0 strong biofilm of Salmonella enterica was 

developed on food and food contacted surfaces [179]. 

Microalgae generally exhibit a negative surface charge 

across a range of pH values [180]. Research by Z. Zhao et 

al., (2021) [181] achieved optimal microalgae biofilm 

growth at a neutral pH (7) due to a positive membrane 

charge, while a higher pH (10) with a negative charge 

facilitated harvesting.  

3 Velocity, turbulence and hydrodynamics 
High flow velocity in wastewater treatment systems can 

affect biofilm growth by thinning the boundary layer 

near the surface, exposing cells to turbulence [52]. 

Hydrodynamic conditions can affect EPS production, its 

overall size and density, growth rate, structure, and even 

the metabolic activity of the microbes living within it 

[182]. A study conducted by Khu et al., (2023) [183], 

found that biofilm communities exposed to increasing 

flow velocities (up to 0.49 m/s) exhibited greater 

diversity and stress resistance, but this beneficial effect 

diminished at higher velocities. It is suggested that high 

fluid shear forces caused by faster flow can strengthen an 

initial bacterial attachment to surfaces by promoting 

nutrient access [184,185]. A study by Chang et al., (2020) 

[186] revealed that Bacillus sp. grown under low shear 

formed loose and tower-shaped biofilms limiting mass 

transfer, while higher shear yielded denser and smoother 

biofilms with increased EPS production. 

Factors to be considered during 
implementation of biofilm technology 
Biofilm not only facilitates mutualism but also 

competition among microbes vying for limited resources 

[187]. Pseudomonas spp. while applied for treating 

wastewater with low biodegradable organics might lead 

to an increase in NH3 in the effluent as the bacteria are 

capable of utilizing amino acid as alternative carbon 

sources which release NH3 as a byproduct [188,189]. 

Sudden high ammonia loading can lead to ammonia 

toxicity, causing nitrogen crashes and leading to 

fluctuations in effluent NH3 levels [190,191]. Similarly, 

the amount of carbon available in a biofilm reactor 

impacts the rate of denitrification process [192]. In a 

microalgae-bacterial system, an increase in bacterial 

population leads to a decrease in nitrate removal rate 

[193]. Despite the symbiotic relationship between algae 

and bacteria in these systems, competition for limited 

nutrients like phosphorus and nitrogen can hinder 

wastewater treatment performance [194]. At a low 

dissolved oxygen concentration in wastewater, the 

removal of nitrogen occurs through unconventional 

pathways within the biofilm [195]. For the treatment of 

wastewater with heavy metals using biofilm, the type of 

donor atoms (Nitrogen, Oxygen, and Sulfur) present in 

the binding site of the matrix influences the preferred 

species of heavy metals to be removed [196]. 

Implementation of biofilm technologies without 

consideration of these key factors can cause treatment 

performance to diverge from expected removal trends, 

leading to a decline in system effectiveness. 

Advantages of biofilm reactors  
While multiple wastewater treatment technologies exist 

with their advantages as stated in sections above. The 

advantage of application of biofilm over other 

wastewater technologies is summarized in the Table 6 

below: Due to their advantages over conventional 

methods, biofilm reactors present themselves as a 

promising alternative for wastewater treatment within 

Kathmandu Valley. 

Conclusions and Future Perspectives 
Due to Kathmandu Valley’s rapid urbanization, the land 

available for construction and expansion of wastewater 

treatment is becoming scarce. This challenge is 

compounded by the increasing volume of wastewater, 

whose composition is further complicated by 

unregulated industrial discharges. Conventional 

suspended growth process requires extensive areas to  



Nepal J Biotechnol. 2024  Jul ;  12  (1 ) :  16-31     Shahi et al.  

©NJB, BSN     26 

handle this rising volume of wastewater. Furthermore, 

these highly mechanized systems are sensitive to 

variations in influent flow and operational parameters, 

demanding constant monitoring to ensure proper 

functioning. While biofilm-mediated wastewater 

treatment is a well-established technology globally, 

Nepal's wastewater management has only recently 

begun incorporating this technology. Biofilm treatment 

involves attaching free-floating microbes to surfaces, 

creating a diverse community that works together to 

remove pollutants from wastewater. These technologies 

emerge as a promising alternative, offering a sustainable 

solution for wastewater treatment with minimal 

operational cost and maintenance energy requirements. 

To effectively implement large-scale biofilm reactors for 

wastewater treatment, a comprehensive understanding 

of biofilm formation, reactor design, and the specific roles 

of microbes in the process is required. Worldwide, 

modifying biofilm reactors with different microbes has 

led to the significant removal of persistent pollutants, 

pharmaceuticals, and industrial wastewater components. 

However, before the large-scale deployment of biofilm 

reactors in Kathmandu Valley, an extensive evaluation of 

their performance in laboratory-scale settings over 

extended durations is crucial. Data obtained from these 

lab-scale systems can pinpoint potential operational 

challenges and inform optimization strategies, 

facilitating the seamless integration of such reactors into 

full-scale wastewater treatment facilities. Furthermore, 

investigations into the efficacy of engineered biofilm 

reactors harboring distinct microbial communities for 

wastewater treatment can be conducted. This targeted 

approach allows for the maximization of pollutant 

removal efficiency of specific wastewater composition, 

ultimately leading to the identification of their most 

suitable application sectors.  

Machine learning approaches can be further explored to 

improve the efficiency of biofilm reactors and develop 

robust kinetic models for pollutant removal. The 

dynamic nature of municipal wastewater composition, 

characterized by significant temporal and seasonal 

fluctuations, presents a challenge. These variations can 

impact the influent load of organic and nutrient 

pollutants, introduce toxic compounds, and potentially 

lead to unforeseen metabolic pathways for pollutant 

removal. Consequently, these unconventional pathways 

necessitate detailed investigation at both the macroscopic 

(reactor level) and cellular levels. The biofilm's microbial 

community exhibits temporal dynamics due to the 

composition of influent wastewater, varying 

environmental conditions, and changes in operational 

parameters. Therefore, continuous monitoring of the 

reactor's microbial genome is crucial using different 

molecular biology techniques. A new direction for the 

study of biofilm technology may be developing strategies 

to sustain the population of specific beneficial microbes 

within the reactor.  

Ethical Approval:  
Not Applicable 

Table 6. Advantage of Biofilm for wastewater treatment over other treatment technologies 

Treatment Technologies Disadvantages of the technologies Advantage of Biofilm 

Activated Sludge Process 
- Highly sensitive to influent variations 
and unexpected operational changes 

- Due to the functional diversity of their microbial 
communities, biofilm systems exhibit enhanced 
resilience to fluctuations in wastewater 
composition, promoting a more stable treatment 
process. 

Waste Stabilization Ponds 
(WSPs) 

- Requires large land area, leading to 
higher capital costs 

- Biofilm reactors are often smaller and more 
compact. 

- Relatively ineffective in colder regions 
- Some biofilm systems can operate efficiently at 
lower temperatures. 

Sequencing Batch Reactor 
(SBR) 

- Suitable for treating smaller wastewater 
volumes 

-Biofilm systems can be designed for various 
treatment capacities. 

Coagulation & 
Flocculation 

- Requires addition of chemicals 
(coagulants & flocculants) 

-The EPS of biofilm have flocculating properties. 

- May generate residual solids requiring 
disposal 
- Ineffective for removing soluble 
organics 

 

Membrane Technologies 
- High energy consumption for pressure-
driven processes 

-Biofilm such as TFs rely on gravity flow eliminating 
the need for high-energy pumps required in 
pressure-driven membrane systems. 

Advanced Oxidation 
Processes (AOPs) 

- Potential for formation of harmful 
byproducts 

- Biofilm are potentially capable of biologically 
degrading some persistent compounds and harmful 
byproducts. 

- High energy consumption  
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