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Abstract 
Bioremediation is a biological treatment process that uses microorganisms to biodegrade environmental pollutants. In this 
study, lipase production, emulsification of hydrocarbons, growth in the presence of inhibitors, and decolorization of 
triphenylmethane dyes by the selected isolate were tested. Lipase production was confirmed by the development of a halo 
region around the colonies on tributyrin agar by the isolate. The isolate was identified as Staphylococcus saprophyticus by 16S 
rRNA gene sequencing and biochemical features. Among different hydrocarbons used, the maximum emulsification index 
was found on xylene (83.33 ± 3.33) % and minimum on diesel (26.67 ±3.33) %. The isolate was able to decolorize malachite 
green, phenol red, fuchsin, and crystal violet with maximum decolorization was observed for malachite green (96.53 ± 0.69) 
% and minimum with crystal violet (27.04 ± 1.13) %. The isolate could grow in the presence of growth inhibitors like phenol 
and lead acetate but was unable to grow in the presence of mercuric chloride. This study suggests that the identified isolate, 
Staphylococcus saprophyticus Li-B5, is suitable for bioremediation because it can emulsify different hydrocarbons, decolorize 
various dyes, and produce lipase enzymes. 
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Introduction 
The growth of urbanization and industrialization has 

exposed the environment to a variety of toxins that are 

potentially harmful to living beings. Pollutants emitted 

by many industrial operations are significant 

contributors to soil and aquatic pollution. Many 

pollutants, such as antimony, chromium, and mercury 

are present in the wastewater from dye-producing 

companies (1). The use of herbicides, pesticides, and 

fertilizers in agriculture introduces pollutants like 

aluminum, copper, zinc, nickel, lead, and arsenic into the 

environment (2,3). Crude oil is also a major 

environmental pollutant due to pipeline vandalism, 

transportation leak, and/or accidental spillage (4). The 

majority of compounds in crude oil are hydrocarbons, 

including hazardous substances such as benzenes, poly-

aromatic hydrocarbons, and oxygenated polycyclic 

aromatic hydrocarbons, all of which pose serious threats 

to humans, animals, and plants in the environment (5). 

The leakage of crude oil and other harmful dyes such as 

cotton blue, crystal violet, malachite green, and methyl 

violet from the textile, leather, cosmetic, pharmaceutical, 

and paper industries represents a direct threat to the 

environment due to their toxicity and carcinogenicity 

(6,7). As a result, these pollutants must be addressed by 

physical, chemical, or biological approaches (8). Physical 

and chemical approaches have been utilized for years, 

but they have difficulties, such as the requirement for an 

expert and specific equipment for the chemical 

remediation operation, while the physical remediation 

procedure is costly (9). The best alternative for physical 

and chemical remediation processes is biological 

remediation, also known as bioremediation. 

Bioremediation is a biological treatment process that uses 

bacteria and fungi for the biodegradation of 

environmental pollutants (10). Following the 1989 leak of 

41 million liters of petroleum from the Exxon Valdez in 

Alaska, bioremediation techniques were significantly 

improved. From 1993 to 1997, Exxon invested more than 

ten million dollars in bioremediation investigations, 

resulting in several patents (11). Bioremediation is used 

to lower the concentration and/or toxicity of many 

compounds, including petroleum derivatives (aliphatic 

and aromatic hydrocarbons), industrial solvents, 

insecticides, and metals using microorganisms (12). 

Microorganisms offer numerous advantages when used 

as pollutant-removing agents in soil, water, and sediment 

environments. They help restore the natural conditions 

by preventing further pollution (13). 

Recent studies have identified more than 79 bacterial 

genera capable of degrading petroleum hydrocarbons 

(14). Some of the bacteria include Achromobacter, 

Acinetobacter, Alkanindiges, Alteromonas, Arthrobacter, 
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Burkholderia, Staphylococcus, Streptobacillus, Streptococcus, 

and Rhodococcus (15–17). Fungal genera including 

Amorphoteca, Neosar toryagraphium, Aspergillus, 

Penicillium, Cephalosporium, Talaromyce, and yeast genera 

Yarrowia, Candida, and Pichia are capable of degrading 

hydrocarbons pollutants in the environment (18). 

Various enzymes produced by these organisms, such as 

cytochrome P450, laccase, dehalogenase, dehydrogenase, 

hydrolase, protease, and lipase play vital roles in 

bioremediation (19). 

Among the enzymes produced by microorganisms, 

lipases are particularly useful in the bioremediation of 

greasy effluents comprising oils, lipids, and proteins 

released from a variety of sources (20). A recent study 

found that Pseudomonas sp. from petroleum oil-

contaminated areas tested positive for lipase production, 

supporting its potential use in breaking down petroleum 

oil-polluted soils. This highlights the importance of 

considering lipase-producing microorganisms as a 

crucial component in formulating bioremediation 

strategies for petroleum oil spills (21). In addition to 

lipase production, the emulsification of hydrocarbons 

and decolorization of triphenylmethane dyes are also 

important factors for bioremediation (7,22). However, to 

date no recent studies have investigated the role of 

Staphylococcus saprophyticus in the bioremediation of 

heavy metals and oil.  

In this study, we isolated a bacterial strain Staphylococcus 

saprophyticus, as a contaminant on tributyrin agar. The 

strain was tested for its ability to produce lipase, emulsify 

hydrocarbon, and decolorization of triphenylmethane 

dyes. The present paper reports on the identification of 

the isolate and its potential for use in the bioremediation 

of petroleum hydrocarbons and triphenylmethane dyes.  

Materials and methods 
Isolation, screening, and culture maintenance  

The organisms isolated were contaminants on tributyrin 

agar (5 g/L peptone; 3 g/L yeast extract; 10 mL/L 

tributyrin; 15 g/L agar; pH 7.5) (23). Lipase-producing 

isolates were selected based on the presence of halo zones 

surrounding colonies on tributyrin agar. These isolates 

were subsequently subcultured onto nutrient agar plates 

for further purification and analysis. All the organisms 

were preserved by lyophilization and stored at -80℃ for 

long-term storage and bacterial slants were prepared and 

stored at 4℃ for research activities. The isolate with the 

highest index on tributyrin agar was selected for further 

research. The index was calculated by the formula: 

(colony diameter + halo diameter)/ colony diameter. 

Identification of selected isolate  

Molecular characterization  
DNA extraction and sequencing  

The isolate was cultured on nutrient broth and incubated 

at 30 ℃ for 24 hours. DNA extraction was performed 

according to the procedure described by Sambrook and 

Russel (24). The 16S rRNA gene of the isolate was 

amplified using universal primers 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’-

TACGGYTACCTTGTTACGACTT-3’) and then 

sequenced at Macrogen Inc., South Korea. 

The raw sequence was assembled and clipped using 

Codon Code Aligner version 11.0.3 and deposited at the 

NCBI GenBank, with accession number MT256296.1. 

Subsequently, the sequence was compared with the 

National Center Biotechnology Information database 

using BLASTN. Twelve highly similar sequences were 

obtained in FASTA format for phylogenetic analysis. 

Maximum likelihood analysis of taxa  

The evolutionary history was inferred by using the 

maximum likelihood method and the Tamura-Nei model 

(24). The bootstrap consensus tree inferred from 2000 

replicates, was taken to represent the evolutionary 

history of the taxa analyzed (25). Evolutionary analyses 

were conducted in MEGA11 (26). 

Morphological and biochemical characterization  

The selected isolate was identified using morphological 

and biochemical characteristics according to Bergey’s 

Manual of Systemic Bacteriology (27). For macroscopic 

characterization, colony form, elevation, margin, texture, 

opacity, surface appearance, chromogenesis, and 

diameter of the colony were observed. Gram’s test was 

performed, and the organism was viewed under the 

microscope for microscopic characterization. For the 

sugar utilization test, the isolate was cultured on phenol 

red broth base (10 g/L peptone; 5 g/L Nacl; 0.018 g/L 

phenol red; pH 7.4) supplemented with 10 g/L 

carbohydrates. For salt tolerance, the organism was 

cultured on nutrient agar supplemented with 10% and 

15% NaCl; for temperature tolerance in nutrient broth at 

45 ℃ and 60 ℃ and for pH tolerance test, in nutrient broth 

at different pH (4.5, 6.0, 7.2, 8.0, 9.5). Growth was 

observed after 24 hours of incubation. 

Screening for hemolysis activity  

The selected isolate was cultured on the blood agar plate 

(3 g/L beef extract; 5 g/L peptone; 5% sheep blood; 5 g/L 

NaCl; 15 g/L agar; pH 7) and incubated at 37 ℃ for 24 

hours. The appearance of clear zones around the colony 
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indicates complete hemolysis while translucent greenish 

color indicates partial hemolysis (28). 

Screening for hydrolytic enzyme production  

The isolate was cultured on starch agar (Nutrient agar 

with 1% starch) and incubated at 30 ℃ for 48 hours. After 

incubation, the agar medium was flooded with iodine 

solution for a few minutes and drained off. Starch 

hydrolysis is indicated by a clear halo region around the 

colony (29). 

Gelatinase production was observed by stabbing gelatin 

agar (7.5 g/L agar) in a test tube. After 48 hours 

incubation at 30 ℃, cultured test tubes were placed at 4 ℃ 

in a refrigerator until the bottom resolidified. Gelatin 

hydrolysis can be confirmed if the medium remains 

liquid after refrigeration (30). 

For the protease test, the isolate was cultured on skim 

milk powder agar (5% skim milk powder) and incubated 

at 30 ℃ for 48 hours. The clear halo region indicates the 

production of protease by the isolate (31). 

Emulsification of various hydrocarbons  

The selected isolate was grown on liquid medium 

described by Abu-Ruwaida et al. (1991) and incubated at 

30 ℃ for seven days without shaking (32). The culture 

was centrifuged at 10,000 rpm for 10 minutes, filtered and 

the filtrate was used for determination of emulsification 

activity. Emulsifying activity was determined using the 

method described by G.A. Plaza et al. (2006) (33). 7 mL of 

supernatant were poured into test tubes which were 

overlaid with 3 mL of diesel, petrol, xylene, and toluene. 

The mixture was then vortexed for 1 min. After 24 hours, 

the emulsion stability was assessed, and the 

emulsification index (EI-24) was calculated using 

Equation 1. Each hydrocarbon was tested in triplicate for 

emulsification test. If the EI-24 was 50% or higher, the 

emulsion was considered stable (34).  

𝐸𝐼 − 24 =
ℎ𝑒𝑖𝑔ℎ𝑡𝑜𝑓 𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 𝑝ℎ𝑎𝑠𝑒
*100                            1 

Decolorization of triphenylmethane dyes  

(Crystal violet, Fuchsin, Malachite green, and Phenol red) 

were the dyes used in this study to observe the ability of 

decolorization by the isolate, following the method 

described by L. Ayed et al. (2010) (35). 1 mL of culture 

grown on nutrient broth was transferred to Mineral salts 

medium (MSM) containing 0.1 g/L MgSO4; 0.6 g/L 

(NH4)2SO4; 0.5 g/L NaCl; 1.36 g/L K2HPO4; 0.02 g/L 

CaCl2; 1.1 mg/L MnSO4; 0.2 mg/L ZnSO4; 0.2 mg/L 

CuSO4; 0.14 mg/L FeSO4; 7 mM glucose; 0.1% yeast 

extract; 50 mg/L dye; pH 7.0 (36). The decolorization of 

dyes was determined spectrophotometrically using 

different wavelengths for each dye (Crystal violet – 592 

nm, Fuchsin – 530 nm, Malachite green – 618 nm, and 

Phenol red – 431 nm). Each dye was tested in triplicate 

for decolorization by the isolate. The decolorization 

percentage was calculated using Equation 2. 

Decolorization (%) =
𝐴𝐼−𝐴𝑡

𝐴𝑖
 *100 2 

Where Ai is the initial absorbance (uninoculated MSM 

medium with dye) and At is the absorbance at incubation 

time t. 

Growth in the presence of inhibitors  

The isolate was cultured in nutrient broth and incubated 

at 30 ℃ for 24 hours. The confluently grown liquid 

culture was streaked over a nutrient agar plate in a zigzag 

pattern. Three bores were made in the culture media 

using a sterile borer. 200 µl of different concentrations of 

phenol (0.1%, 0.5%, 1%); mercuric chloride (100 ppm, 500 

ppm, 1000 ppm); lead acetate (1 mM, 5 mM, 10 mM) was 

pipetted into the bores, and the zone of inhibition was 

observed. Three replicate bores were used for each 

inhibitor to ensure consistent and reliable results.  

Statistical analysis 

Data analysis was performed using Origin Pro and 

Microsoft Excel. ANOVA was conducted for quantitative 

data where the Tukey test was used to compare the 

means at a 95% confidence interval. 

Result and Discussion 
Isolation and screening 

Among ten isolates, isolate B5 (Figure 1a) had a 

significantly greater hydrolysis index (3.08 ± 0.083) 

compared to other isolates at p < 0.05 confidence interval 

as shown in Figure 1b. The organism with the highest 

index on tributyrin agar was selected for further study. 

Lipase-producing bacteria can be used for 

bioremediation because they aid in the degradation of 

xenobiotic compounds such as petroleum, insecticides, 

fertilizers, pesticides, plastics, and other hydrocarbon-

containing substances, which are constantly degrading 

our natural environment (37,38). 

Identification of selected isolate  

Molecular characterization of the isolate 

Based on 16s rRNA gene sequencing, the selected isolate 

showed high similarity to Staphylococcus saprophyticus 

(Figure 2). BLAST result using “16S ribosomal RNA 

sequences (Bacteria and Archaea)” database, indicated 

that B5 showed 100% similarity with Staphylococcus 

edaphicus strain CCM 8730, Staphylococcus saprophyticus 

subsp. saprophyticus ATCC 15305, Staphylococcus 
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saprophyticus strain JCM 2427, and Staphylococcus 

saprophyticus strain 102446.  

Figure 1. a – halo region demonstrated by B5 in tributyrin agar 
compared with another isolate. b – Graph showing the 
Tributyrin hydrolysis index of various organisms. *The 
hydrolysis index is significantly greater at a p < 0.05 confidence 
interval. Data represent mean ± SE (n = 3). 

Branches corresponding to partitions reproduced in less 

than 50% of bootstrap replicates were collapsed. The 

percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (2000 replicates) 

was shown next to branches. Initial trees for the heuristic 

search were obtained automatically by applying 

Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the Tamura-Nei 

model and then selecting the topology with superior log 

likelihood values. 

Morphological and biochemical 

characterization 
Table 1. Phenotypic features of selected isolate and comparison 
with closely related species based on BLAST result. 

Test Li-B5 

S. 
saprophyticus 

subsp. 
Saprophyticus 

(27) 

Staphylococcus 
edaphicus 

strain 
CCM8730 (39) 

Colony 
morphology 

   

Colony form circular ND circular 

Elevation slightly 
raised 

Raised slightly convex 

Margin entire entire entire 

Texture butyrous glistening glistening 

Opacity opaque opaque ND 

Surface 
appearance 

smooth smooth smooth 

Chromogenesis Creamy 
White 

slightly 
yellow 

whitish 

Diameter (mm) 1.0 to 2.0 >5 2 

Pigmentation - - - 

Gram staining Gram-
positive 

Gram-positive Gram-positive 

Microscopy Violet 
cocci 

clustered 
in group 

Singly and 
form pairs. 

spherical or 
irregular in 

cocci 

Cell Size (µm) <1 0.6-1.2 0.8 

Growth on 
NaCl agar  

   

10% Nacl + + + 

15% Nacl + d - 

Alkaline 
phosphatase 

- - + 

pH 8.0 - ND ND 

pH 10.0 - ND - 

Temperature 
tolerance test  

   

45 °C for 24 h + d - 

45 °C for 72 h + ND ND 

60 °C for 24 h - ND ND 

Growth at pH 
   

4.5 - ND - 

6 + ND ND 

7.2 + ND ND 

8 + ND ND 

9.5 + ND ND 

Citrate 
Utilization 

- ND + 

Bile Esculin 
Hydrolysis 

- - - 

Reduction of 
nitrate 

 
ND ND 

VP Test + + + 

Indole 
Production 

- ND + 

Motility - - - 

Hydrogen 
Sulphide 
Production 

- ND + 

Coagulase Test - ND - 

Hemolysis  - ND + (weak) 

Arginine 
dehydrolase 

- - - 

Lysine 
decarboxylase 

- ND - 

Ornithine 
decarboxylase 

- - - 

Pyruvate 
Utilization 

- ND + 

Production of 
   

Lipase + ND + 

Amylase - ND ND 

Gelatinase + ND - 

a 

b 
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Protease - ND ND 

Urease + + + 

Catalase + ND + 

Oxidase - - - 
Sugar 
utilization 

   

 Glucose + + + 

 Sucrose + + + 

Fructose + + + 

 Maltose + + + 

 Xylose - - - 

 Galactose - - + 

 Lactose + - - 

Mannitol + d + 

Arabinose - - - 

Ribose - - + 

Glycerin + ND + 

Sorbose - ND - 

Melezitose + ND - 

Sorbitol - ND + 
Resistant to 
antibiotics 

AMP, P, 
CB, CIP, 

GEN, 
TE, CTX, 

AM, 
CXM, 

AZM, E 

ND ND 

Sensitive to 
antibiotics 

MO, LE, 
VA, RIF 

ND ND 

d – not defined, ND – not determined, AMP – ampicillin (10 mcg); P – 
penicillin (1 unit); CB – carbenicillin (100 mcg); CIP – ciprofloxacin 
(5 mcg); GEN – gentamycin (10 mcg); TE – tetracycline (30 mcg); CTX – 
cefotaxime (30 mcg); AMC – amoxicillin (10 mcg); CXM – cefuroxime 
(30 mcg); MO – moxifloxacin (5 mcg); LE – levofloxacin (5 mcg); AZM – 
azithromycin (15 mcg); E – erythromycin (15 mcg); VA – vancomycin 
(5 mcg); RIF – rifampicin (5 mcg). 

Morphological and biochemical tests, as shown in Table 

1 suggest that the selected isolate was a gram-positive 

coccus of size <1µm and non-motile. After 24 hours of 

incubation on nutrient agar medium, colonies were 

creamy white, smooth, butyrous, slightly elevated, 

circular, and 1-2 mm in diameter at 30 °C. The isolate 

tested positive for urease and catalase but negative for 

oxidase. It also tested positive for VP but negative for 

citrate utilization, bile esculin hydrolysis, nitrate 

reduction, indole formation, hydrogen sulfide 

production, arginine dehydrolase, lysine decarbolase, 

ornithine decarbolase, and pyruvate utilization. It was 

able to utilize glucose, sucrose, fructose, maltose, lactose, 

mannitol, glycerin, and melezitose. The isolate was 

susceptible to moxifloxacin (5 mcg), levofloxacin (5 mcg), 

vancomycin (5 mcg), and rifampicin (5 mcg). It tolerated 

salt well, growing up to 15% NaCl. The isolate grew well 

at 45 °C but not at 60 °C. In the pH tolerance test, the 

isolate grew confluently at pH 6, 7.2, 8, and 9.5, but not at 

pH 4.5.  

The phenotypic features of the selected isolate were 

compared with Staphylococcus saprophyticus and 

Staphylococcus edaphicus (27,39). Table 1 suggests that the 

selected isolate belongs to S. saprophyticus because most 

of the morphological and biochemical features were 

similar. The only difference between the selected isolate 

and S. saprophyticus was the fermentation of lactose. 

Phenotypic features of B5 that differ from S. edaphicus 

were growth in 15% NaCl, alkaline phosphate 

production, citrate utilization, indole production, H2S 

production, hemolysis, pyruvate utilization, production 

Figure 2. Maximum likelihood tree 
generated from 16S rRNA sequence 
data with log likelihood of -2466.06. 
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of gelatinase, fermentation of galactose, lactose, ribose, 

melezitose, and sorbose.  

Screening for hemolytic activity and 

production of hydrolytic enzymes  

The selected isolate was screened for hydrolysis of blood 

and production of other hydrolytic enzymes. The isolate 

was nonhemolytic, coagulase negative, and H2S negative; 

such nonpathogenic nature ensures safety for industrial 

and environmental applications (40). The organism 

produced gelatinase but was unable to produce amylase 

and protease. Production of more than one enzyme by the 

same organism is beneficial for industrial applications 

because more than one enzyme can be produced 

simultaneously under the same condition (41). Microbial 

enzymes degrade crude oil spills in oceans, pesticides, 

and other industrial wastes aiding in bioremediation and 

controlling environmental pollution (42). 

Emulsification of various hydrocarbons  

The emulsification index varied from 26.67% to 83.33% as 

shown in Figure 3. The emulsification of diesel (26.67 ± 

3.33) % and kerosene (53.33 ± 3.33) % was significantly 

lower compared to xylene (83.33 ± 3.33) % at a p < 0.05 

confidence interval. The emulsification of petrol (70 ± 

5.77) % and toluene (76.67 ± 6.67) % was comparable to 

xylene (83.33 ± 3.33) % at p < 0.05 confidence interval. 

Similar studies have reported that emulsification by 

bacterial species on xylene was found to be maximum, 

with an emulsification index of 87% on xylene, 71.23% on 

kerosene, 67% on diesel, and 74% on petrol (43–46). 

Bioemulsifiers are often found to improve hydrocarbon 

biodegradation in liquid media, soil slurries, water, and 

soil microcosms (22). Bioemulsifiers produced by 

different bacteria have different mechanisms that aid in 

bioremediation such as; stabilizing oil-in-water 

emulsions, decomposing and neutralizing 

polychlorinated biphenyls, microbial-enhanced oil 

recovery, and in situ biodegradation of oil sludge (47,48). 
A similar study reported that Pseudomonas spp. isolated 

from oil-contaminated soil showed high potential for oil 

degradation and biosurfactant production, and the 

biosurfactant showed emulsification activity in kerosene, 

mannitol, glycerol, and glucose which confirmed its 

applicability against different hydrocarbon pollution 

(49). Bioemulsifiers are non-toxic and biodegradable, 

making them very useful for bioremediation (48). 

 
Figure 3. Graph showing the amount of emulsification of 
various hydrocarbons by selected isolate. *The mean 
emulsification index is significantly lower in comparison to 
xylene at a p < 0.05 confidence interval. Data represent mean ± 
SE (n = 3).  

Decolorization of triphenylmethane dyes  

 
Figure 4. Graph showing decolorization of various dyes by the 
selected isolate. * The mean decolorization is significantly 
higher in comparison to other dyes at a p < 0.05 confidence 
interval. Data represent mean ± SE (n = 3).  

The percentage decolorization of the triphenylmethane 

dyes ranges from 27.04% to 96.53% as shown in Figure 4. 

The decolorization of malachite green (96.53 ± 0.69) % 

was significantly greater than phenol red (64.09 ± 1.41) %, 

fuchsin (46.52 ± 0.96) %, and crystal violet (27.04 ± 1.13) 

% at p < 0.05 confidence interval. A study reported that 

the average percentage decolorization of malachite 

green, phenol red, fuchsin, and crystal violet was 33%, 

80%, 37%, and 62% respectively (35). Another study 

showed that the decolorization of Malachite Green, 

Methyl Violet, Crystal Violet, and Cotton Blue was 

(94.7%), (91.8%), (86.6%), (68.4%) respectively (50). The 

results demonstrate the ability of the isolate to remove 

triphenylmethane dyes through biosorption or 

biodegradation. The decolorizing ability of the isolate 

would be favorable for bioprocessing dye-containing 

wastewater, degradation of a wide range of pollutants, 

and for industrial applications (51). Another study 

showed that Staphylococcus saprophyticus was very 

efficient in degrading the dye Navy N5RL1 commonly 
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used in carpet industry (52). Thus, isolate could be useful 

in bioremediation because of its ability to decolorize the 

harmful dyes in the environment. 

Growth in the presence of inhibitors  

 
Figure 5. Growth of selected isolate on different concentrations 
of various inhibitors. I: mercuric chloride (A – 100 ppm, B – 500 
ppm, C – 100 ppm). II: phenol (A – 1%, B – 0.5%, C – 0.1%). III: 
lead acetate (A – 10 mM, B – 5 mM, C – 1 mM). 

The growth of selected isolate on nutrient agar containing 

various concentrations of inhibitors is shown in Figure 5. 

Isolate B5 was able to grow in the presence of different 

concentrations of phenol (0.1%, 0.5%,1%) and lead acetate 

(1 mM, 5 mM, 10 mM). Mercuric chloride inhibited the 

growth of the isolate, forming a zone of inhibition with 

diameters of 27.5 mm, 25 mm, and 19 mm at 

concentration of 1000 ppm, 500 ppm, and 100 ppm 

respectively. The result indicates that the isolate was able 

to grow in the presence of phenol and lead acetate but 

unable to grow in the presence of mercuric chloride. The 

isolate also degrades different pollutants like 

hydrocarbons and decolorizes different harmful dyes. 

Hence, it stands poised for impactful bioremediation 

applications, adept at not only degrading environmental 

pollutants but also resilient against inhibitors like phenol 

and lead acetate, which fail to impede its growth. 

As an opportunistic pathogen requiring BSL-2 

containment, environmental applications of S. 

saprophyticus demand risk assessment focusing on 

exposure vectors (aerosols, fomites, water) for 

immunocompromised hosts; microbial resilience (biofilm 

persistence, antimicrobial resistance); and containment 

efficacy. To assess the risks associated with the 

environmental use of Staphylococcus saprophyticus, a 

thorough risk assessment should be conducted, focusing 

on exposure pathways, pathogenicity, and 

environmental persistence. Mitigation strategies, such as 

engineering controls (e.g., closed processing systems), 

personal protective equipment (PPE), and strict 

decontamination protocols (e.g., chemical disinfectants, 

UV treatment), can be implemented to minimize 

exposure. Regular sampling and fail-safe sterilization 

(e.g., autoclaving effluent) to prevent unintended release. 

Conclusion 
The selected isolate, Staphylococcus saprophyticus Li-B5, 

demonstrated remarkable capabilities, showcasing its 

proficiency in lipase production, hydrocarbon 

emulsification, and triphenylmethane dye 

decolorization. Its industrial potential and suitability for 

enzyme production is underscored by its elevated 

tributyrin agar index and nonpathogenic nature. 

Moreover, this isolate emerges as a potent candidate for 

bioremediation, excelling in the degradation of 

petroleum hydrocarbons and the detoxification of 

hazardous dyes in the environment. 
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